SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE:	COMPUTER PROGRAMMI	NG 2		
CODE NO.:	CSD101	SEMESTER:	WINTER 98	
PROGRAM:	CPA/CET/CNT/CSST			
	DENNIS OCHOSKI			
AUTHOR:	JANUARY 1998		JANU	ARY 1997
DATE:		PREVIOUSLY DA		

Jan 5/98 DATE

CSD101

COURSE CODE

COURSE NAME

TOTAL CREDITS: 4

PREREQUISITE(S): CSD100

I. COURSE DESCRIPTION: This course is intended to extend the foundation of computer programming skills needed in the computer studies area. It is the second course in the C programming language, and further develops the student's problem-solving, computer programming, and software utilization skills.

II. TOPICS TO BE COVERED:

- 1. Advanced data-manipulation operators.
- 2. Library and user-defined functions.
- 3. One- and two-dimensional arrays.
- 4. Pointers and strings.
- 5. Data structures and files.

-3-

COMPUTER PROGRAMMING 2

CSD101

COURSE NAME

COURSE CODE

III. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE:

Upon successful completion of this course the student will demonstrate the ability to:

1. Discuss and apply the concepts of additional special C operators used to manipulate data. (unit 9: pgs. 190-197 and unit 10)

This learning outcome will comprise approximately 10% of the course.

Elements of the performance:

define and apply the concepts of the following terms:

TRUE	bitwise OR	bit shifting
FALSE	bitwise XOR	bitwise complement
bit manipulation	boolean operators	overloaded
bitwise AND	?:	

- apply conditional operators to relational tests
- discuss the concept of truth tables
- apply bitwise and compound bitwise operators
- · write, test, and debug programs using advanced operators
- Discuss and use additional C library functions, and write programs incorporating userwritten, independently-compiled functions. (unit 15 and unit 16: pgs. 330-342, 347-350)

This learning outcome will comprise approximately 30% of the course.

Elements of the performance:

define and apply the concepts of the following terms:

scope	calling vs called functions	
local vs global variables	pass by value	
class	random number generation	
auto vs static variables	arguments/parameters	

CSD101

COURSE NAME

COURSE CODE

Elements of the performance(cont'd):

- discuss and apply additional standard library functions supplied with Turbo C++ such as the math, string, and ctype libraries, and how to determine the libraries that are available and which library a particular function is located
- · develop modularized, structured programs by creating user-written functions
- discuss and apply the concepts of passing arguments to called functions by value
- · discuss and apply the concept of 'returning' values to calling functions
- · write, test, and debug programs containing functions
- Develop algorithms and write C programs to solve problems involving one- and twodimensional arrays. (unit 17)

This learning outcome will comprise approximately 15% of the course.

Elements of the performance:

define and apply the concepts of the following terms:

one-dimensional array index value two-dimensional array null character subscript

- discuss the purpose and concepts relating to one- and two-dimensional arrays
- · declare and initialize both numeric and character arrays
- pass arrays between C functions
- write, test, and debug programs containing arrays

-4-

CSD101

COURSE NAME

COURSE CODE

 Develop algorithms and write C programs to solve problems involving the use of pointers, with specific application to functions, and, string manipulation. (unit 16: pgs. 343-346, unit 18)

This learning outcome will comprise approximately 30% of the course.

Elements of the performance:

define and apply the concepts of the following terms:

offset	pointer constant		
address operator	pass by reference		

- discuss and apply the concept of pointers and pointer arithmetic
- discuss and apply the concepts of passing arguments to called functions by reference
- apply the concept of pointers to arrays
- discuss and apply the concept of strings and pointers in C
- discuss and apply the use of the following string functions: strcpy, strcat, strchr, strcmp, and strlen
- write, test, and debug programs using pointers and strings
- Develop algorithms and write C programs to solve problems involving the use of data structures and file manipulation. (units 19, 21, and 22)

This learning outcome will comprise approximately 15% of the course.

Elements of the performance:

• define and apply the concepts of the following terms:

structure	union	append
member	open	internal pointer
record	close	

-5-

CSD101

COURSE NAME

COURSE CODE

Elements of the performance(cont'd):

- discuss the concept of structures in C
- apply the use of arrays of structures
- · discuss and apply methods of passing and returning structures to and from functions
- create a disk file
- write data to, and, read data from a disk file
- · perform disk I/O with records
- · discuss and apply the use of the following functions: stdin, stdout, and stderr
- · differentiate between sequential and random access files
- · write, test, and debug programs containing structures and files

-6-

CSD101

COURSE NAME

COURSE CODE

IV. EVALUATION METHODS:

The mark for this course will be arrived at as follows:

Quizzes:

outcome #1	5%
outcome #2	20%
outcome #3	10%
outcome #4	20%
outcome #5	10%
Assignments:	
outcome #1	5%
outcome #2	10%
outcome #3	5%
outcome #4	10%
outcome #5	5%
Total	100%

The grading scheme used will be as follows:

- A+ 90 100% Outstanding achievement
- A 80 89% Excellent achievement
- B 70 79% Average achievement
- C 55 69% Satisfactory achievement
- R Repeat
- X Incomplete A temporary grade limited to special circumstances that have prevented the student from completing objectives by the end of the semester. An X grade reverts to an R grade if not upgraded within a specified time.

CSD101

COURSE NAME

COURSE CODE

V. SPECIAL NOTES

- 1. In order to pass this course the student must obtain an overall quiz average of 55% or better, as well as, an overall assignment average of 55%.
- 2. Assignments must be submitted by the due date according to the specifications of the instructor. Late assignments will normally be given a mark of zero. Late assignments will only be marked at the discretion of the instructor in cases where there were extenuating circumstances.
- 3. The instructor reserves the right to modify the assessment process to meet any changing needs of the class. Consultation with the class will be done prior to any changes.
- 4. The method of upgrading an incomplete grade is at the discretion of the instructor, and may consist of such things as make-up work, rewriting tests, and comprehensive examinations.
- 5. Students with special needs (eg. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.
- 6. Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

VI. PRIOR LEARNING ASSESSMENT:

Students who wish to apply for advanced credit in the course should consult the instructor.

VII. REQUIRED STUDENT RESOURCES

- Text: Programming C in 12 Easy Lessons by Greg Perry
- Diskettes: minimum of 3, 3 1/2"

-8-